<u>A MODERN ELECTROTHERMAL VAPORISATION</u> <u>INSTRUMENTATION (ETV-ICP-OES) AND IT'S APPLICATION TO</u> <u>ENVIRONMENTAL AND BIOLOGICAL SAMPLES</u>

<u>J.Haßler</u>, O.Förster, Wacker Ceramics, Max Schaidhauf Str.25, D-87437 Kempten, Germany P.R.Perzl, Spectral Systems, Augsburger Straße 37, D-82256 Fürstenfeldbruck, Germany

ETV: Principle of operation

Temperature-controlled evaporation in a graphite crucible in a graphite-tube furnace with Argon atmosphere (up to 3000°C), electronic controlled addition of a reaction-gas (modifier),transport of the aerosol to the ICPplasma by optimised gas guide with high transport-efficiency. Integrated microprocessor-control with graphic LCDdisplay, electronic gas-flow-controland mixing, synchronisation by electronic interface. Real-time touchless temparaturemeasurement of the crucible and automatic temperature control. Automated sample-handling by autosampler with up to 50 positions, microbalance.

Schematic: computer, controller, powersupply, gas-controls, online-temperature-control

ETV-analysis: example for a typical procedure

Examples of application

The results of analysed element-concentrations were calculated basing on the shown calibration functions. The points on these common calibration functions (dried liquid standards and solid sample material) show an excellent correlation and thereby prove the correctness and the convincing features of this method. The examples themselfes were selected as best results from a greater number of analyses.

The materials were: - Pure Graphite (home standards) - Candidate CRM Green Algae (ISS-2)

Graphite-furnace, new design

stable up to 3000°C, chemical inert materials, easy handling and maintenance, minimised seals, reduced number of working parts

AI, Ni, P, S in Apple Leaves

18 Intensity	Ni2320 D	etermina	ion in Ap	ple Leave	s
16		by ETV	-ICP-OES	•	
10	aqueous N	li-Standar	d Solutio	n (Fa Mer	ck)

As, Ni, Zn in Green Algae

- NIST SRM 1515 Apple Leaves

Concentrations:

Candidate RM	NIST CRM 1515		
Green Algae	Apple Leaves		
	286 9 µg/g		
4,5+/- 0,5 µg/g	0,038+/- 0,007 µg/g		
	5,64+/- 0,24 µg/g		
33+/- 6 µg/g	0,91+/- 0,12 µg/g		
	0,159+/- 0,011 %		
35,2+/- 3,4 µg/g	12,5 0,3 µg/g		
	Candidate RM Green Algae 4,5+/- 0,5 µg/g 33+/- 6 µg/g 35,2+/- 3,4 µg/g		

in Graphite

Tab. Experimental setup for ETV-ICP-OES:

ICP-Spectrometer	IRIS-AP Thermo Jarrell Ash Echelle-polychromator, Argon rinsed Echelle grating 60 grooves/mm		
Spectral data	Focal distance: 381mm		
	Resolution: at 200 nm width of one pixle 0,0035 nm Spektral range: 175-1050nm		
Signal detection	CID-camera		
	Active surface of CID chip:14,3×14,3mm (512 x 512 pixle)		
ICP	axially plasma; RF generator: 1150 W at 27,12 Mhz		
ETV-unit	ETV 4000 P.Perzl; Spectral Systems;		
	Power supply: max power 400 A; end-on stream system;		
	Furnace control: inside temperature controled		

0 🖸 ——						
0	10	20	30	40	50	60

U 🕻	2	i	1	1	i	i		1	
C) 1	100 2	.00 3	00 4	400	500	600	700	800

Conclusion:

Modern ETV-ICP configurations are an excellent and cost-effective tool for easy, fast and precise direct solid sample multi-element analysis in a wide area of applications. The field of applications ranges from anorganic materials

like ceramics and geological samples up to environmental samples and biological materials like the shown examples.

Concentration abs. [ng]

The presented results demonstrate the easy and uncomplicated possibilities of calibration via liquid standard solutions compared with the certified plant materials. The found limits of detection were less than 1ng abs. and the typical reproducibilities better than 5% rel.

A professional ETV-equipment is further more rationalised by an autosampler with up to 50 crucibles and integrated micro-balance.